
Docs » Architecture

Opening Reproducible Research System Architecture

1. Introduction and Goals

Preamble

The packaging of research workflows is based on the concept of the Executable Research Compendium
(ERC, see specification and article). The reproducibility service is defined by a web API specification and
demonstrated in a reference implementation. Both are published under permissive open licenses, as is this
document.

The normative specification is given in the Markdown formatted files in the project repository, which form
the basis for readable PDF and HTML versions of the architecture. A HTML and PDF version of this
document are available at https://o2r.info/architecture/ and https://o2r.info/architecture/o2r-
architecture.pdf respectively.

1.1 Requirements Overview

This architecture describes the relationship of a reproducibility service with other services from the
context of scientific collaboration, publishing, and preservation. Together these services can be combined
into a new system for transparent and reproducible scholarly publications.

The reproducibility service must provide a reliable way to create and inspect packages of computational
research to support reproducible publications. Creation comprises uploading of a researcher's workspace
with code, data, and documentation for building a reproducible runtime environment. This runtime
environment forms the basis for inspection, i.e. discovering, examining details, and manipulating workflows
on an online platform.

1.2 Quality Goals

The system must be transparent to allow a scrutiny demanded by a rigorous scientific process. All
software components must be Free and Open Source Software (FOSS). All text and specification must
be available under a permissive public copyright license.

The system must integrate with existing services and focus on the core functionality: creating
interactive reproducible runtime environments for scientific workflows. It must not replicate existing
functionality such as storage or persistent identification.

In regard to the research project setting, the system components must be well separated, so functions
can be developed independently, e.g. using different programming languages. This allows different

 o2r Architecture

Transparency

Separation of concern

Flexibility &
modularity

file:///home/runner/work/architecture/architecture/site/
file:///home/runner/work/architecture/architecture/site/
file:///home/runner/work/architecture/architecture/site/user-scenarios/
file:///home/runner/work/architecture/architecture/site/glossary/
file:///home/runner/work/architecture/architecture/site/metadata/
file:///home/runner/work/architecture/architecture/site/zenodo/
file:///home/runner/work/architecture/architecture/site/
file:///home/runner/work/architecture/architecture/site/
https://o2r.info/erc-spec
https://doi.org/10.1045/january2017-nuest
https://o2r.info/api/
https://github.com/o2r-project/reference-implementation
https://en.wikipedia.org/wiki/Markdown
https://github.com/o2r-project/architecture/
https://o2r.info/architecture/
https://o2r.info/architecture/o2r-architecture.pdf
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Public_copyright_license

developers to contribute efficiently. It must be possible to provide various computational
configurations required by specific ERC which are outside of the included runtime.

1.3 Stakeholders

Role/Name Goal/point of contact

Author (scientist) publish ERC as part of a scientific publication process

Reviewer (scientist) examine ERC during a review process

Co-author (scientist) contribute to ERC during research (e.g. cloud based)

Reader (scientist) view and interact with ERC on a journal website

Publisher increase quality of publications in journals with ERC

Curator/preservationist ensure research is complete and archivable using ERC

Operator provide infrastructure to researchers at my university to collaborate and conduct high-quality research using ERC

Developer use and extend the tools around ERC

Some of the stakeholders are accompanied by user scenarios in prose.

2. Architecture constraints

This section shows constraints on this project given by involved parties or conscious decisions made to
ensure the longevity and transparency of the architecture and its implementations. If applicable, a
motivation for constraints is given. (based on biking2)

2.1 Technical constraints

 Constraint Background and/or motivation

TECH.1 Only open licenses All third party software or used data must be available under a suitable code license, i.e. either

TECH.2 OS independent development and deployment Server applications must run in well defined Docker containers to allow installation on any host system and to not limit developers to a specific language or environment.

TECH.3 Do not store secure information The team members experience and available resources do not allow for handling information with security concerns, so no critical data, such as user passwords but also data with privacy concerns, must be stored in the system.

TECH.4 Configurations for ERC runtimes ERCs include the runtime environment in form of a binary archive. The architecture must support executing this runtime environment and must be able to provide different configurations outside it, for example

2.2 Organizational constraints

 Constraint Background and/or motivation

ORG.1 Team and schedule https://o2r.info/about

ORG.2 Do not interfere with existing well-established peer-review process This software is not going to change how scientific publishing works, nor should it. While intentioned to support public peer-reviews, open science etc., the software should be agnostic of these aspects.

ORG.3 Only open licenses All created software must be available under an

ORG.4 Version control/management Code must be versioned using git and published on

ORG.5 Acknowledge transfer from group domain to persistent domain The ERC bundles artifacts coming from a private or group domain for a transfer to a public and persistent domain (cf.

2.3 Conventions

file:///home/runner/work/architecture/architecture/site/user-scenarios/
https://biking.michael-simons.eu/docs/index.html#section-architecture-constraints
https://opensource.org/licenses
https://opendatacommons.org/licenses
https://docker.com
file:///glossary#computer-architecture
file:///glossary#kernel
https://o2r.info/about
https://opensource.org/licenses
https://creativecommons.org/licenses
https://github.com/o2r-project
http://www.forschungsdaten.org/index.php/Curation_Domain_Model

 Constraint Background and/or motivation

CONV.1 Provide formal architecture documentation Based on arc42 (template version 7.0).

CONV.2 Follow coding conventions Typical project layout and coding conventions of the respective used language should be followed as far as possible. However, we explicitly accept the research project context and do

CONV.3 Documentation language is British English International research project must be understandable by anyone interested; consistency increases readability.

CONV.4 Use subjectivisation for server component names Server-side components are named using personalized verbs or (ideally) professions:

CONV.5 Configuration using environment variables Server-side components must be configurable using all caps environment variables prefixed with the component name, e.g.

3. System scope and context

3.1 Business context

Communication partner Exchanged data

Reproducibility service, e.g. o2r reference implementation publication platforms utilize creation and examination services for ERC; reproducibility service uses different

Publishing platform, e.g. online journal website or review system users access ERC status and metadata via search results and paper landing pages; review process integrates ERC details and supports manipulation;

Collaboration platform provide means to collaboratively work on data, code, or text; such platforms support both public and private (shared) digital workspaces

ID provider retrieve unique user IDs, user metadata, and authentication tokens; user must log in with the provider

Execution infrastructure ERC can be executed using a shared/distributed infrastructure

Data repository the reproducibility service fetches (a) content for ERC creation, or (b) complete ERC, from different sources; it stores created ERC persistently at suitable repositories, which in turn may connect to long-term archives and preservation systems

Registry (metadata) the reproducibility service can deliver metadata on published ERC to registries/catalogues/search portals directly and mediately via data repositories; the service can also retrieve/harvest contextual metadata during ERC creation to reduce required user inputs; users discover ERC via registries

Software repository software repository provide software artifacts during ERC creation and store executable runtime environments

Archives and digital preservation systems saving ERCs in preservation systems includes extended data and metadata management (cf. private/group domain vs. persistent domain in the

http://arc42.org/
file:///home/runner/work/architecture/architecture/site/img/3.1-business-context.png
https://o2r.info/results
http://www.forschungsdaten.org/index.php/Curation_Domain_Model

3.2 Technical context

All components use HTTP(S) over cable networks connections for communication (metadata documents,
ERC, Linux containers, etc.).

4. Solution strategy

This section provides a short overview of architecture decisions and for some the reasoning behind them.

Web API

The developed solution is set in an existing system of services, and first and foremost must integrate well
with these systems, focussing on the specific missing features of building and running ERCs. These
features are provided via a well-defined RESTful API.

Microservices

To allow a dynamic development and support the large variety of skills, all server-side features are
developed in independent microservices. These microservices handle only specific functional parts of the
API and allow independent development and deployment cycles. Core components are developed using
server-side JavaScript based on Node.js with Express while other components are implemented in Python.

We accept this diversification increases complexity of both development and testing environments and the
deployment of said services.

Required documentation is minimal. The typical structure should follow common practices of the
respective language and tools.

Storage and intra-service communication

In accordance with the system scope, there is no reliable storage solution implemented. The microservices
simply share a common pointer to a local file system path. Storage of ERC is only implemented to make the
solution independent during development and for the needs of core functionality (temporal storage), but it
is not a feature the solution will eventually provide.

The unifying component of the architecture is the database. It is known to all microservices.

Some microservices communicate via an eventing mechanism for real-time updates, such as the search
database and the component providing live updates to the user via WebSockets. The eventing is based on
the operation log of the database (which is normally used to synchronise database nodes). This is a clear
misuse of an internal feature, but a lot simpler than maintaining a full-blown eventing solution.

Demonstration, user data & authentication

To be able to demonstrate the system, a browser-based client application is developed. It uses the RESTful
API to control the system. OAuth 2.0 is used for authentication and minimal information, which is already
public, is stored for each user. This information is shared between all services which require authentication
via the database.

The client application manages the control flow of all user interactions.

Tools

https://en.wikipedia.org/wiki/Microservices
https://nodejs.org/
https://expressjs.com/

If standalone tools are developed, they provide a command-line interface (CLI). The CLI allows integration
into microservices when needed and to package tools including their dependencies as containers and
distributing them using a container registry. These 2nd level containers are started by the microservices and
can run either next to the microservices or in an independent container cluster, providing scalability. It
must only be ensured they are correctly configured in each microservice. The only required documentation
is the installation into a container and usage of the CLI.

5. Building block view

5.1 Refinement Level 1

5.1.1 Blackbox Publication Platforms

Publications platforms are the online interaction points of users with scientific works. Users create
publications, e.g. submitting to a scientific journal, publishing on a pre-print server, publishing on a self-
hosted website, or collaborating in online repositories. Users examine publications, e.g. browsing,
searching, reading, downloading, or reviewing.

5.1.2 Blackbox ID Provider

Identification information of distributed systems is crucial, and for security reasons as well as for limiting
manual reproduction of metadata, a central service can provide all of

unique identification of users and metadata on users,
authentication of users, and
metadata on a user's works, e.g. publications or ERC.

Persistent identifiers for artifacts in the reproducibility service itself are not required, as these are provided
by data storage and registries. However, services such as ePIC could allow to retrieve persistent IDs.

5.1.3 Blackbox Execution Infrastructure

The execution infrastructure provides CPU time and temporary result storage space for execution of ERC,
both "as is" and with manipulation, i.e. changed parameters. It also provides different architectures and
operating system kernel configurations which are outside of the scope of ERC's runtime environments
based on containers.

5.1.4 Blackbox Data Repositories

Data repositories are all services storing data but not software. More specifically, they may store software
"as data", but not with software-specific features such as code versioning or installation binaries for
different computer architectures. Data repositories may be self-hosted or public/free, domain-specific or
generic. They typically provide persistent identifiers or handles, e.g. a DOI or URN. They are used both for
loading created ERC and for storing the ERC created by the reproducibility service.

5.1.5 Blackbox Registries

Registries are metadata indexes or catalogues.

They are recipients of metadata exports by the reproducibility service to share information about ERC, e.g.
add a new ERC to an author's profile. This requires the reproducibility services to translate the internal
metadata model into the recipients data model and encoding.

http://www.pidconsortium.eu/
file:///glossary#architecture
file:///glossary#kernel
https://www.doi.org/
https://en.wikipedia.org/wiki/Uniform_Resource_Name

They are sources of metadata during ERC creation when the information in the fetched content is used to
query registries for additional information which can be offered to the user.

5.1.6 Blackbox Software Repositories

Software repositories are a source and a sink for software at different abstraction levels. They are a source
for software dependencies, such as system packages for installing a library. They are a sink for executable
images, which comprise a number of software artifacts and their dependencies, for a specific ERC instance.

5.2 Refinement Level 2

5.2.1 Whitebox Publication Platforms

Publication platforms can be roughly divided into two groups. They can be either specific journals hosted
independently, such as JStatSoft or JOSS, or a larger platform provided by a publisher to multiple journals,
such as ScienceDirect, MDPI, SpringerLink, or PLOS. To some extend, pre-print servers, for example OSF
or arXiv.org, can also fall into the latter category.

Integration with the reproducibility service can happen via plug-ins to generic software, e.g. OJS, or by
bespoke extensions. Integrations are based on the service's public API.

5.2.2 Whitebox ID Provider

The reproducibility service uses ORCID to authenticate users and retrieve user metadata. The
reproducibility service does not use the ORCID authorisation to edit ORCID user data or retrieve non-
public data from ORCID, thus this process is pseudo-authentication using OAuth. Internally, the user's
public ORCID is the main identifier. User have different levels, which allow different actions, such as
"registered user" or "administrator". These levels are stored in the reproducibility service.

5.2.3 Whitebox Execution Infrastructure

Such an infrastructure could be either self-hosted, e.g. Docker Swarm-based, use a cloud service provider,
such as Amazon EC2, Docker Cloud, or even use continuous integration services such as Travis CI or Gitlab
CI. Or it could use a combination of these.

Not all of these options provide the flexibility to provide configurations outside of containers, for example
specific operating system kernels. An implementing system must manage these independently, for
example by mapping ERC requirements like an operating system, to a part of the execution infrastructure
that supports it.

5.2.4 Whitebox Data Repositories

http://www.jstatsoft.org/
http://joss.theoj.org/
http://sciencedirect.com/
http://www.mdpi.com/
https://link.springer.com/
https://plos.org/
https://osf.io/
https://arxiv.org/
https://pkp.sfu.ca/ojs/
http://orcid.org/
https://security.stackexchange.com/questions/44611/difference-between-oauth-openid-and-openid-connect-in-very-simple-term
https://www.docker.com/products/docker-swarm
https://aws.amazon.com/ec2/
http://cloud.docker.com/
https://travis-ci.org/
https://about.gitlab.com/gitlab-ci/

The reproducibility service does not persistently store anything . It only keeps copies of files during creation
and inspection. So where are ERCs saved and where is their data coming from?

Collaboration platforms, e.g. ownCloud/Sciebo, GitHub, ShareLatex, OSF, allow users to create, store, and
share their research (code, text, data, et cetera). Besides being an interaction platform for users, they can
also be seen simply as a data repository. The reproducibility service fetches contents for building an ERC
from them based on public links, e.g. a public GitHub repository or shared Sciebo folder. It is possible to
link ERC creation to an project/repository under development on a collaboration platform as to trigger an
ERC (re-)creation or execution when changes are made.

Protocols: WebDAV , ownCloud , HTTP (including webhooks), git

Domain data repositories, e.g. PANGAEA or GFZ Data Services, can be accessed by the reproducibility
service during creation and execution of ERC to download data. Allowing access to data repositories
reduces data duplication but requires control over/trust in the respective repository.

Protocol: HTTP APIs

Generic Repositories, e.g. Zenodo, Mendeley Data, Figshare, OSF, provide (a) access to complete ERC
stored in repositories for inspection and execution by the reproducibility service, and (b) storage of created
ERC. repositories.

Protocols: (authenticated) HTTP APIs

Archives and digital preservation solutions can provide long-term preservation of ERC. The data repository
and/or one of the involved platform providers are responsible for preservation. A data repository might
save the hosted content to an archive, be regularly harvested by an archive, or be part of a distributed dark
archive, e.g. CLOCKSS. A platform provider might supply a digital preservation service, e.g. an installation
of Archivematica.

file:///home/runner/work/architecture/architecture/site/img/5.2-whitebox-data-repos.png
http://sciebo.de/
http://github.com/
http://sharelatex.com/
https://osf.io/
https://en.wikipedia.org/wiki/Webhook
https://www.pangaea.de/
http://dataservices.gfz-potsdam.de/portal/
https://zenodo.org/
https://data.mendeley.com/
http://figshare.com/
https://osf.io/
https://www.clockss.org
https://www.archivematica.org/

Protocol: HTTP carrying bitstreams and metadata

 Data Curation Continuum

The Data Curation Continuum (cf. diagram by Andre Treloar), describes how data moves from the
private domain of a researcher to the public domain of data repositories over the course of conducting
research. It describes the properties of data and important aspects of the transitions. In a publishing
process based on the reproducibility service, the full migration process is run through.

5.2.5 Whitebox Registries

Research data registries and websites, for example (CRIS, DataCite, Google Scholar, Scopus, Altmetric, to
name just a few, collect metadata on publications and provide services with this data. Services comprise
discovery but also derivation of citation data and creating networks of researchers and publications.

The listed examples include open platforms, commercial solutions, and institution-specific platforms. Some
of the registries offer a public, well-defined API to retrieve structured metadata and to create new records.

Protocol: HTTP APIs

5.2.6 Whitebox Software Repositories

5.2.6.1 Blackbox Package repositories

Package repositories are used during ERC creation to download and install software artifacts for specific
operating systems, e.g. Debian APT or Ubuntu Launchpad, for specific programming languages or
environments, e.g. CRAN, or from source, e.g. GitHub.

5.2.6.2 Blackbox Container registries

Container registries such as Docker Hub, Quay, self-hosted Docker Registry 2.0 or Amazon ERC, store

http://andrew.treloar.net/research/diagrams/data_curation_continuum.pdf
https://www.uni-muenster.de/FB7_MultimediaSupport/CRIS_Infoseite/Forschungsdatenbank_Infoseite.html
https://www.datacite.org/
https://scholar.google.de/
https://www.scopus.com/
https://www.altmetric.com/
file:///home/runner/work/architecture/architecture/site/img/5.2-whitebox-software-repos.png
https://wiki.debian.org/Apt
https://launchpad.net/ubuntu
https://cran.r-project.org/
https://github.com/
https://hub.docker.com/
https://quay.io/
https://github.com/docker/distribution
https://aws.amazon.com/de/ecr/

executable images of runtime environments. They can be used to distribute the runtime environments
across the execution infrastructure and provide an intermediate ephemeral storage for the reproducibility
service.

5.2.7 Whitebox Reproducibility Service

5.2.7.1 Blackbox Webserver

A webserver handles all incoming calls to the API (/api/v1/) via HTTPS (HTTP is redirected) and
distributes them to the respective microservice. A working nginx configuration is available in the test
setup.

5.2.7.2 Blackbox UI

The UI is a web application based on Angular JS, see o2r-platform. It connects to all microservices via their
API and is served using the same webserver as the API.

5.2.7.3 Blackbox Microservices

The reproducibility service uses a microservice architecture to separate functionality defined by the web
API specification into manageable units.

This allows scalability (selected microservices can be deployed as much as needed) and technology
independence for each use case and developer. The microservices all access one main database and a
shared file storage.

5.2.7.4 Blackbox Tools

Some functionality is developed as standalone tools and used as such in the microservices instead of re-
implementing features. These tools are integrated via their command line interface (CLI) and executed as
2nd level containers by microservices.

5.2.7.5 Blackbox Databases

The main document database is the unifying element of the microservice architecture. All information
shared between microservices or transactions between microservices are made via the database, including

file:///home/runner/work/architecture/architecture/site/img/5.2-whitebox-repro-service.png
https://nginx.org
https://github.com/o2r-project/o2r-platform/blob/master/dev/nginx.conf
https://angularjs.org/
https://github.com/o2r-project/o2r-platform
https://en.wikipedia.org/wiki/Microservices
https://o2r.info/api

session state handling for authentication.

A search database is used for full-text search and advanced queries.

The database's operation log, normally used for synchronization between database nodes, is also used for

event-driven communication between microservices, and
synchronization between main document database and search index.

 Note

This eventing "hack" is expected to be replaced by a proper eventing layer for productive deployments.

5.2.7.6 Blackbox Ephemeral file storage

After loading from external sources and during creation of ERC, the files are stored in a file storage shared
between the microservices. The file structure is known to each microservice and read/write operations
happen as needed.

5.3 Refinement Level 3

5.3.1 Whitebox microservices

Each microservice is encapsulated as a Docker container running at its own port on an internal network
and only serving its respective API path. Internal communication between the webserver and the
microservices is unencrypted, i.e. HTTP .

Testing: the reference implementation provides instructions on running a local instance ofr the
microservices and the demonstration UI.

Development: the o2r-platform GitHub project contains docker-compose configurations to run all
microservices, see repository file docker-compose.yml and the project's README.md for instructions.

The following table describes the microservices, their endpoints, and their features.

Project API path Language Description

muncher /api/v1/compendium and /api/v1/job JavaScript (Node.js) core component for CRUD of compendia and jobs (ERC execution)

loader /api/v1/compendium (HTTP POST only) JavaScript (Node.js) load workspaces from repositories and collaboration platforms

finder /api/v1/search JavaScript (Node.js) discovery and search, synchronizes the database with a search database (Elasticsearch) and exposes read-only search endpoints

transporter ~ /data/ and ~* \.(zip|tar|tar.gz) JavaScript (Node.js) downloads of compendia in zip or (gzipped) tar formats

informer ~* \.io JavaScript (Node.js) socket.io-based WebSockets for live updates to the UI based on database event log, e.g. job progress

inspecter /api/v1/inspection R (plumber) allow inspection of non-text-based file formats, e.g.

substituter /api/v1/substitution JavaScript (Node.js) create new ERCs based on existing ones by substituting files

manipulater under development -- provide back-end containers for interactive ERCs

ERC exporting

http://docker.com/
https://github.com/o2r-project/reference-implementation
https://github.com/o2r-project/o2r-platform
https://docs.docker.com/compose/compose-file/
https://github.com/o2r-project/o2r-muncher
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://github.com/o2r-project/o2r-loader
https://github.com/o2r-project/o2r-finder
https://github.com/o2r-project/o2r-transporter
https://github.com/o2r-project/o2r-informer
http://socket.io/
https://github.com/o2r-project/o2r-inspecter
https://www.rplumber.io/
https://github.com/o2r-project/o2r-substituter
https://github.com/o2r-project/o2r-manipulater/

Project API path Language Description

shipper /api/v1/shipment Python ship ERCs, including packaging, and their metadata to third party repositories and archives

Authentication

Project API path Language Description

bouncer /api/v1/auth , /api/v1/user/ JavaScript (Node.js) authentication service and user management (whoami, level changing)

Supporting services

Existing software projects can be re-used for common functionality, such as gathering statistics. These
supporting services run alongside the microservices in their own containers accessible via the main
webservice.

Project Description

Piwik collect user statistics

5.3.2 Whitebox database

Two databases are used.

MongoDB document database with enabled replica-set oplog for eventing.

Collections:

users

sessions

compendia

jobs

shipments

The MongoDB API is used by connecting microservices via suitable client packages, which are available for
all required languages.

Elasticsearch search index, kept in sync with the main document database by the microservice finder .
The ids are mapped to support update and delete operations.

The two main resources of the API are kept in separate indices due to their different structure/mappings:

compendia with type compendia
jobs with type jobs

The search index is accessed by clients through the search endpoint provided by finder .

5.3.3 Whitebox tools

https://github.com/o2r-project/o2r-shipper
https://github.com/o2r-project/o2r-bouncer
https://matomo.org/
https://www.mongodb.com/
https://docs.mongodb.com/manual/core/replica-set-oplog/
https://elastic.co
https://www.elastic.co/blog/index-vs-type

project language description

meta Python scripts for extraction, translation and validation of metadata; for details see metadata documentation

containerit R generation of Dockerfiles based on R sessions and scripts

Each tool's code repository includes one or more Dockerfiles , which are automatically build and
published on Docker Hub. The microservices use the tool's Docker images to execute the tools instead of
installing all their dependencies into the microservices. The advantages are a controlled environment for
the tool usage, independent development cycles and updating of the tools, smaller independent images for
the microservices, and scalability.

Meta

Meta provides a CLI for each step of the metadata processing required in the reproducibility service as
shown by the following diagram. After each step the created metadata is saved as a file per model to a
directory in the compendium. A detailed view of the meta tool usage in the creation process is provided in
the runtime view ERC Creation.

Containerit

The containerit tool extracts required dependencies from ERC main documents and uses the information
and external configuration to create a Dockerfile, which executes the full computational workflow when
the container is started. Its main strategy is to analyse the session at the end of executing the full
workflow.

5.3.4 Whitebox ephemeral file storage

A host directory is mounted into every container to the location /tmp/o2r .

6. Runtime view

The runtime view describes the interaction between the static building blocks. It cannot cover all potential
cases and focusses on the following main scenarios.

Scenario Purpose and overview

ERC Creation The most important workflow for an author is creating an ERC from his workspace of data, code and documentation. The author can provide these resources as a direct upload, but a more comfortable process is loading the files from a collaboration platform. Three microservices are core to this scenario:

ERC Inspection The most important workflow for a reviewer or reader is executing the analysis encapsulated in an ERC. The execution comprises creation of configuration files (if missing) from metadata, compiling the a display file using the actual analysis, and saving the used runtime environment. The core microservice for this scenario is

6.1 ERC Creation

https://github.com/o2r-project/o2r-meta
file:///metadata
https://github.com/o2r-project/containerit
file:///home/runner/work/architecture/architecture/site/img/5.2-whitebox-meta-tool.png

file:///home/runner/work/architecture/architecture/site/img/6.1-runtime-view-creation.png

First, the user initiates a creation of a new ERC based on a workspace containing at least a viewable file
(e.g. an HTML document or a plot) based on the code and instructions provided in a either a script or
literate programming document), and any other data. The loader runs a series of steps: fetching the files,
checking the incoming workspace structure, extracting raw metadata from the workspace, brokering raw
metadata to o2r metadata, and saving the compendium to the database. The compendium is now a non-
public candidate, meaning only the uploading user or admin users can see and edit it. All metadata
processing is based on the tool meta .

Then the user opens the candidate compendium, reviews and completes the metadata, and saves it. Saving
triggers a metadata validation in muncher . If the validation succeeds, the metadata is brokered to several
output formats as files within the compendium using meta , and then re-loaded to the database for better
searchability.

Next, the user must start a job to add the ERC configuration and runtime environment to the workspace,
which are core elements of an ERC. The ERC configuration is a file generated from the user-provided
metadata (see ERC specification). The runtime environment consists of two parts: (a) the runtime manifest,
which is created by executing the workflow once in a container based on the tool containerit ; and (b) the
runtime image, which is built from the runtime manifest. A user may provide the ERC configuration file and
the runtime manifest with the workspace for fine-grained control; the generation steps are skipped then.

Finally the user starts a shipment of the compendium to a data repository. The shipper manages this two
step process. The separate "create" and "publish" steps allow checking the shipped files and avoid
unintentional shipments, because a published shipment creates an non-erasable public resource.

 In the code

The loader has two core controllers for direct upload and load from a collaboration platform. Their
core chain of functions are realised as JavaScript Promises, see the code for loader and uploader
respectively. The respective steps are shared between these two cases where possible, i.e. starting with
the step stripSingleBasedir .

6.2 ERC Inspection

file:///glossary#literate-programming
https://o2r.info/erc-spec/spec/#erc-configuration-file
file:///glossary#javascript-promises
https://github.com/o2r-project/o2r-loader/blob/master/lib/loader.js#L48
https://github.com/o2r-project/o2r-loader/blob/master/lib/uploader.js#L44

The user initiates an inspection of an existing ERC by providing a reference such as DOI or URL. loader

retrieves the compendium files, saves them locally and loads the contained metadata. Then the user can
start a new job for the compendium. muncher checks the request, creates a new job in the database and
returns the job ID. The user's client can use the ID to connect to the live logs provided by informer . All
following steps by muncher regularly update the database, whose change events informer uses to
continuously update client via WebSockets.

The job starts with creating a copy of the compendium's files for the job. A copy-on-write filesystem is
advantageous for this step. Then the archived runtime image is loaded from the file in the compendium
into a runtime repository. This repository may be remote (either public or private, e.g. based on Docker
Registry, ECR or GitLab) or simply the local image storage. Then all files except the runtime image archive
are packed so they can be send to a container runtime. The container runtime can be local (e.g. the Docker
daemon), or a container orchestration such as Kubernetes. It provides log updates as a stream to muncher ,
which updates the database, whose changes trigger updates of the user interface via informer . When the
container is finished, muncher compares the created outputs with the ones provided in the compendium
and provides the result to the user.

 In the code

The muncher has two core resources: a compendium represents an ERC, a job represents a "run" of an
ERC, i.e. the building, running, and saving of the runtime environment including execution of the
contained workflow. The core function for this is the Executor , which chains a number of steps using
JavaScript Promises, see the code. The check uses the tool erc-checker .

7. Deployment View

7.1 Test server https://o2r.uni-muenster.de

file:///home/runner/work/architecture/architecture/site/img/6.2-runtime-view-inspection.png
file:///glossary#doi
https://en.wikipedia.org/wiki/Copy-on-write
https://github.com/docker/distribution
https://aws.amazon.com/ecr/
https://docs.gitlab.com/ce/user/project/container_registry.html
https://en.wikipedia.org/wiki/Kubernetes
file:///glossary#javascript-promises
https://github.com/o2r-project/o2r-muncher/blob/master/lib/executor.js#L1306
https://github.com/o2r-project/erc-checker
https://o2r.uni-muenster.de

The o2r infrastructure is driven by the research community's need for user friendly and transparent but
also scalable and reliable solutions to increase computational reproducibility in the scientific publication
process. To retrieve feedback from the community (public demo) and to increase software quality
(controlled non-development environment), the current development state is regularly published on a
test server.

The server is managed completely with Ansible to ensure a well-document setup. The base operating
system is CentOS Linux 7. The machine has 4 cores, 8 GB RAM, and a local storage ~100 GB, and runs
on a VM host. The one machine in this deployment runs the full o2r reproducibility service, i.e. all
microservices and a webserver to serve the user interfaces. It also runs the databases and ancillary
services, such as a web traffic statistics service. When executing a compendium, the compendium
workspace is packaged in a tarball and send to the Docker daemon. This allows easy switching to
remote machines, but also has a performance disadvantage.

All building blocks run in their own Docker container using an image provided via and build on Docker
Hub using a Dockerfile included in each microservice's code repository. The server is managed by the
o2r team; external building blocks are managed by the respective organisation/provider.

7.2 Production (sketch)

Motivation

Quality and/or Performance
Features

Mapping of Building Blocks to
Infrastructure

file:///home/runner/work/architecture/architecture/site/img/7.1-deployment-view-testserver.png
https://www.ansible.com/
https://hub.docker.com/r/o2rproject/
https://github.com/search?q=topic%253Amicroservice+org%253Ao2r-project+fork%253Atrue

 Note

This deployment view is a sketch for a potential productive deployment and intends to point out
features of the chosen architecture and expected challenges or solutions. It is not implemented at the
moment!

A productive system must be reliable and scalable providing a single reproducibility service API
endpoint. It must also adopt the distribution and deployments of the reproducibility service's

Motivation

file:///home/runner/work/architecture/architecture/site/img/7.2-deployment-view-production-sketch.png

microservices. Being based on containers it naturally uses one of the powerful orchestration engines,
such as Docker Swarm or Kubernetes. It can also include multiple execution infrastructures to support
multiple container software versions, different architectures, kernels, GPUs, or even specialised
hardware. Operators of a reproducibility service can separate themselves from other operators by
offering specific hardware or versions.

The services are redundantly provided via separated clusters of nodes for (a) running the reproducibility
service's microservices and ancillary services, (b) running the document and search databases, (c)
running ERC executions. Separating the clusters allows common security protocols, e.g. the tool and
execution cluster should not be able to contact arbitrary websites. The software in the data cluster can
run in containers or bare metal. The clusters for app and compendia have access to a common shared
file storage, a potential bottleneck. Performance of microservices can be easily scaled by adding nodes
to the respective clusters. The diversity of supported ERCs can be increased by providing different
architectures and kernels, and hardware. Some requirements could be met on demand using
virtualisation, such as a specific operating system version.

The o2r reproducibility service and execution infrastructures are managed by the o2r team similar to
the test server. The other big building blocks, like publishing platforms or data repositories, are
managed by the respective organisations.

Credits

This specification and guides are developed by the members of the project Opening Reproducible
Research (Offene Reproduzierbare Forschung) funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft (DFG) - Projektnummer 274927273) under grant numbers PE 1632/10-1, KR
3930/3-1, and TR 864/6-1).

Opening Reproducible Research (o2r, https://o2r.info/about) is a DFG-funded research project by Institute
for Geoinformatics (ifgi) and University and Regional Library (ULB), University of Münster, Germany. Building
on recent advances in mainstream IT, o2r envisions a new architecture for storing, executing and interacting
with the original analysis environment alongside the corresponding research data and manuscript. This
architecture evolves around so called Executable Research Compendia (ERC) as the container for both
research, review, and archival.

To cite this specification please use

Nüst, Daniel, 2018. Reproducibility Service for Executable Research Compendia: Technical Specifications and
Reference Implementation. Zenodo. doi:10.5281/zenodo.2203844

For a complete list of publications, posters, presentations, and software projects from th2 o2r project
please visit https://o2r.info/results/.

Quality and/or Performance
Features

Mapping of Building Blocks to
Infrastructure

https://docs.docker.com/engine/swarm
http://kubernetes.io/
https://www.uni-muenster.de/forschungaz/project/9520
http://gepris.dfg.de/gepris/projekt/274927273
https://o2r.info
https://o2r.info/about
http://www.uni-muenster.de/Geoinformatics/
https://www.ulb.uni-muenster.de/
http://doi.org/10.5281/zenodo.2203844
https://o2r.info/results/

Next

License

The o2r architecture specification is licensed under Creative Commons CC0 1.0 Universal License, see file
LICENSE . To the extent possible under law, the people who associated CC0 with this work have waived all

copyright and related or neighboring rights to this work. This work is published from: Germany.

About arc42

arc42, the Template for documentation of software and system architecture.

By Dr. Gernot Starke, Dr. Peter Hruschka and contributors.

Template Revision: 7.0 EN (based on asciidoc), January 2017

© We acknowledge that this document uses material from the arc 42 architecture template,
http://www.arc42.de. Created by Dr. Peter Hruschka & Dr. Gernot Starke.

Build 0d60d5e @ 2021-07-01 11:54:09 +0200

Licensed under Creative Commons CC0 1.0 Universal License.

Built with MkDocs using a theme provided by Read the Docs.

https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/o2r-project/architecture/arc42/LICENSE
http://www.arc42.de
file:///home/runner/work/architecture/architecture/site/user-scenarios/
https://www.mkdocs.org/
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

	Opening Reproducible Research System Architecture
	1. Introduction and Goals
	Preamble
	1.1 Requirements Overview
	1.2 Quality Goals
	1.3 Stakeholders

	2. Architecture constraints
	2.1 Technical constraints
	2.2 Organizational constraints
	2.3 Conventions

	3. System scope and context
	3.1 Business context
	3.2 Technical context

	4. Solution strategy
	Web API
	Microservices
	Storage and intra-service communication
	Demonstration, user data & authentication
	Tools

	5. Building block view
	5.1 Refinement Level 1
	5.1.1 Blackbox Publication Platforms
	5.1.2 Blackbox ID Provider
	5.1.3 Blackbox Execution Infrastructure
	5.1.4 Blackbox Data Repositories
	5.1.5 Blackbox Registries
	5.1.6 Blackbox Software Repositories

	5.2 Refinement Level 2
	5.2.1 Whitebox Publication Platforms
	5.2.2 Whitebox ID Provider
	5.2.3 Whitebox Execution Infrastructure
	5.2.4 Whitebox Data Repositories
	5.2.5 Whitebox Registries
	5.2.6 Whitebox Software Repositories
	5.2.7 Whitebox Reproducibility Service

	5.3 Refinement Level 3
	5.3.1 Whitebox microservices
	5.3.2 Whitebox database
	5.3.3 Whitebox tools
	Meta
	Containerit
	5.3.4 Whitebox ephemeral file storage

	6. Runtime view
	6.1 ERC Creation
	6.2 ERC Inspection

	7. Deployment View
	7.1 Test server https://o2r.uni-muenster.de
	7.2 Production (sketch)

	Credits
	License
	About arc42

